
Downhole Optical Sensor for Detecting CO, in Brine Richard T. Wainner, Matthew C. Laderer, Joy G. Stafford, and Michael B. Frish

Laser-based Sensors for **GCS MVA and Safety**

- Open-path CO₂ gas sensors (red) (and below)
- Handheld / mobile leak survey tools (and below)
- Shallow in-ground CO₂ gas point sensors (blue)
- Well-depth supercritical CO₂ sensors (green) (this project)

Open-path Sensor (OPS)

- Alarm-type system with 100-m path length
- Solar powered, with continuous monitoring via radio modem
- Intended for use along pipelines and wellhead infrastructure

The OPS was installed immediately north of the IBDP wellhead and set for continuous CO₂ monitoring during injection and maintenance operations (photos right). Data were collected via radio modem on a workstation in a trailer to the south of the wellhead.

Remote Carbon-dioxide Leak Detector (RCLD)

- Compact, portable, personnel-wearable laser module with hand-held transceiver
- Battery powered with optional data logging via RS-232 port.
- The RCLD (photo right) was laboratory tested to show its response to CO₂ plumes and field tested to illustrate its effectiveness around a CCS site using various objects as targets

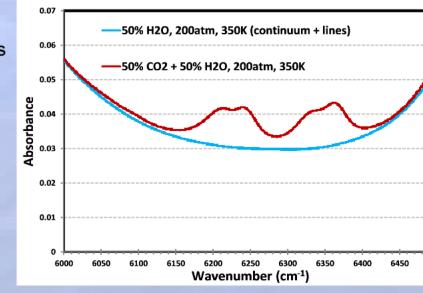
A Heath Remote Methane Leak Detector (RMLD) was modified to detect carbon-dioxide level by replacing the laser module, and the infrared detector with devices operating at 2.0 µm.

Laser-based Sensors in the Broader Energy Industry

- Hand-held natural gas leak survey Remote Methane Leak Detector (RMLD™) - Manufactured and Distributed by Heath Consultants Inc.
- Airborne and vehicle-borne pipeline leak survey
- Autonomous methane emissions monitoring over critical facilities and leak rate quantification – ARPA-E MONITOR program
- Methane monitoring in coal mines
- Multispectral monitoring of well fluids

TDLAS Principles

Tunable diode laser absorption spectroscopy (TDLAS) can be used to measure concentrations of CO₂ in any fluid phase. Carbon dioxide absorbs infrared light in specific wavelength bands (ro-vibrational transitions). A modulated laser diode current results in intensity and


wavelength modulation. The diode wavelength modulation is generally centered on a CO₂ absorption feature away from the absorption bands of interfering molecules. However, high density water (high P gas or liquid) has a strong, broad continuum that is difficult to avoid. The figure right illustrates absorbance (A) spectra for high pressure gaseous CO₂ and H₂O for a 10mm optical path through the fluid at the wavelength region of interest for this work. [Optical transmission $T = I/I_0 = e^{-A}$]

At liquid conditions, absorbance increases to $A_{H2O} = \sim 10$ for a 10mm path. This is still a suitable return power fraction $(5x10^{-5})$ to detect the A_{CO2}=0.05 feature. Also, the very broad spectral width of the liquid CO₂ feature (~30cm⁻¹) necessitates

a novel laser tuning approach that generates ~30cm⁻¹ of wavelength tuning (over the standard 1cm⁻¹ approach).

Contact

Dr. Michael B. (Mickey) Frish Manager, Industrial Sensors Physical Sciences Inc. 9030 Monroe Road Houston, TX 77061 frish@psicorp.com

Dr. Richard T. Wainner Principal Research Scientist Physical Sciences Inc. 20 New England Business Center Andover, MA 01810 (978) 738-8142 wainner@psicorp.com

Physical Sciences Inc. **20 New England Business Center**

Headquartered in Andover, MA, with eight satellite locations in the U.S.

Employee-owned through an Employee Stock Ownership Trust

Andover, Massachusetts 01810

Who we are

• A growing 42 year-old company of ~180 talented scientists, engineers and administrative

Three wholly-owned subsidiaries, Q-Peak, Research Support Instruments, Faraday Technology,

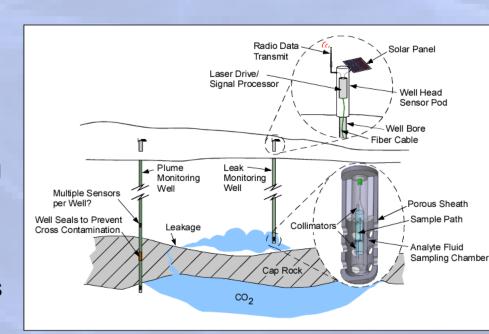
A technologically diverse research and development organization with revenues of nearly \$50M

personnel

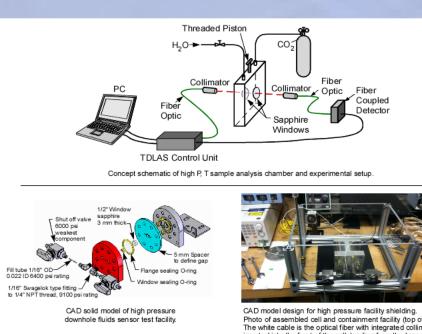
- Components, systems, and instrumentation for industry and government sales
- Technology and product licensing

with complementary capabilities

PSI Industrial Sensors


What we do

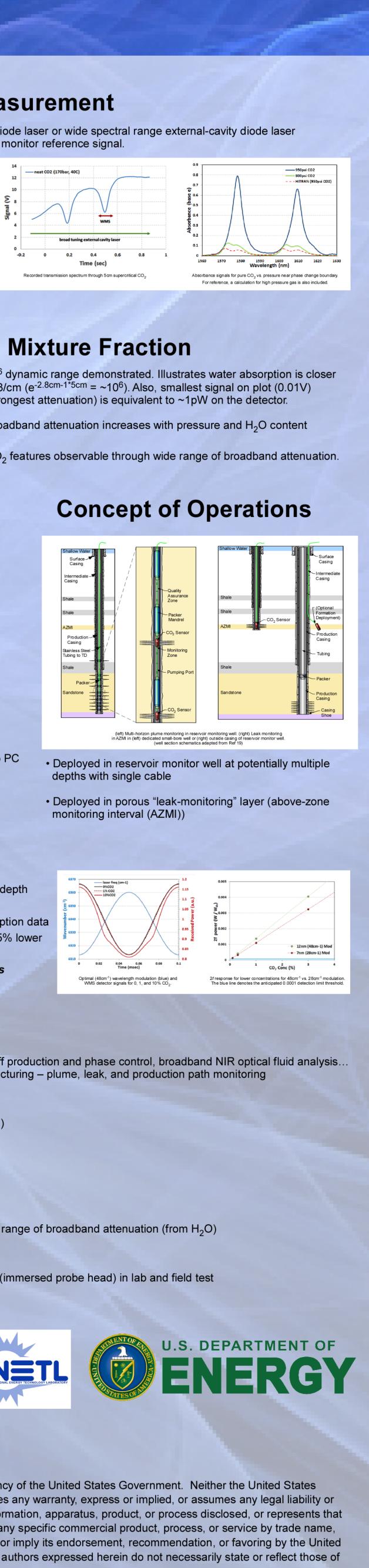
- Interdisciplinary combination of science and engineering skills with specific strengths in development and commercialization of photonic sensors and instrumentation
- Product development from concept to manufacturing prototype
- Go to market via direct sales, strategic partnerships, pilot scale manufacturing, and licensing
- Developing strong interactions with the oil & gas and broader energy industries since 1994


Abstract

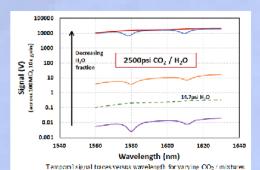
PSI is developing a sensor, based on tunable diode laser absorption spectroscopy (TDLAS), for continuous and autonomous in situ measurement of fluids within and around sequestration reservoirs for CO₂ content. The sensor employs broad spectral tuning of a near-infrared laser to access vibrational absorption bands of supercritical and gaseous CO₂ in the presence

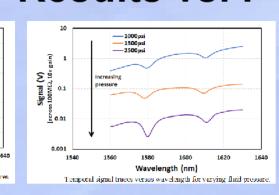
of reservoir water. The fluid interrogation is accomplished via a passive optical sensor head at depth that is coupled to the laser at the surface (well head) via an optical fiber. A field test prototype design is presented, along with initial laboratory results from a benchtop proof-of-concept apparatus. The sensor supports geological carbon sequestration (GCS) monitoring, verification, and accountability (MVA) needs for detecting and characterizing leakage from GCS sites at all depths. A suite of downhole sensors can also help advance the science of GCS fluid transport modeling by monitoring CO₂ plume progress cost effectively with speed, sensitivity, and chemical selectivity to supplement current techniques of seismic mapping and pulsed neutron decay.

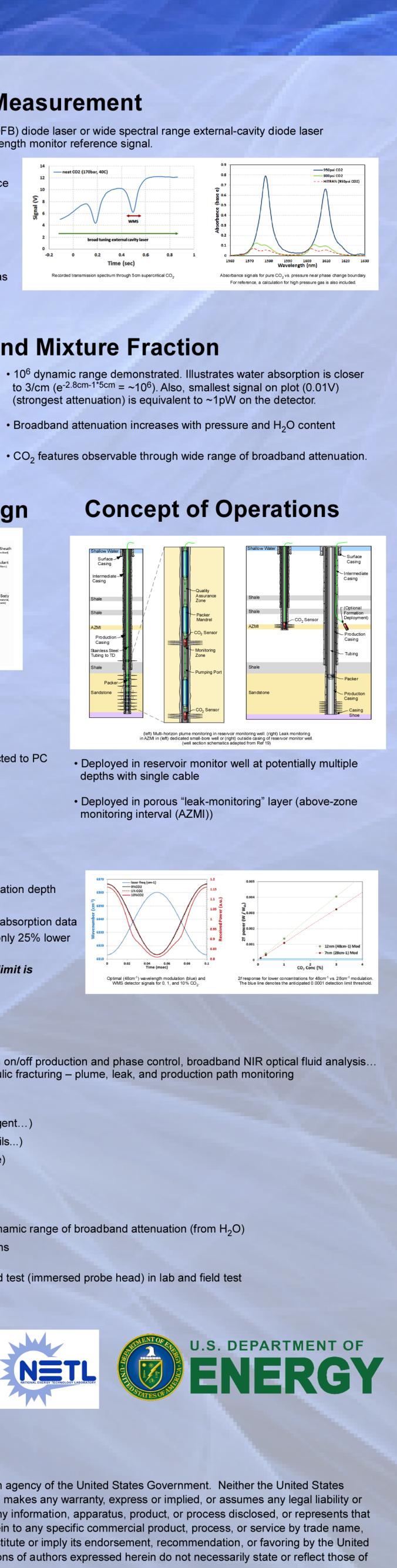
High P & T Lab Test Facility

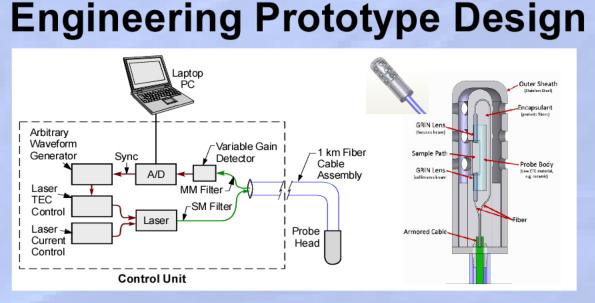


- Sapphire-windowed optically-accessible sample chamber
- In-line manual pump to 3500psi (replaces threaded piston in Figure)
- Secondary containment for protection
- Two spacers fabricated at 5mm and 50mm thickness (optical path length)
- H₂O / CO₂ mixtures generated by injecting water first then pressurizing with CO₂. CO₂ diffuses in or is elevated with partial sample removal and successive dilution with CO₂




Signal Measurement


- Fiber-coupled input can be telecom distributed feedback (DFB) diode laser or wide spectral range external-cavity diode laser (employed by all data shown here). ECDL also has a wavelength monitor reference signal.
- Wide wavelength (275cm⁻¹) sweep (ECDL) employed to reveal full spectral range of features. (30cm⁻¹ telecom source is specified for final sensor wavelength modulation spectroscopy "WMS" measurement)
- Variable gain on detector employed to accommodate wide range of H_2O mixture fraction (broadband attenuation)
- Phase change illustrated from double-lobed high-density gas spectral feature to single-peaked liquid feature



Results vs. P and Mixture Fraction

- Passive optical probe head with porous outer sheath
- Few cm fiber-optically coupled path fixed by an encapsulant
- Rugged fiber cable with delivery and return fiber
- Electronics at surface in shoe box-sized Control Unit connected to PC for R&D or telemetry hardware for autonomous operation.

WMS Sensor Modeling

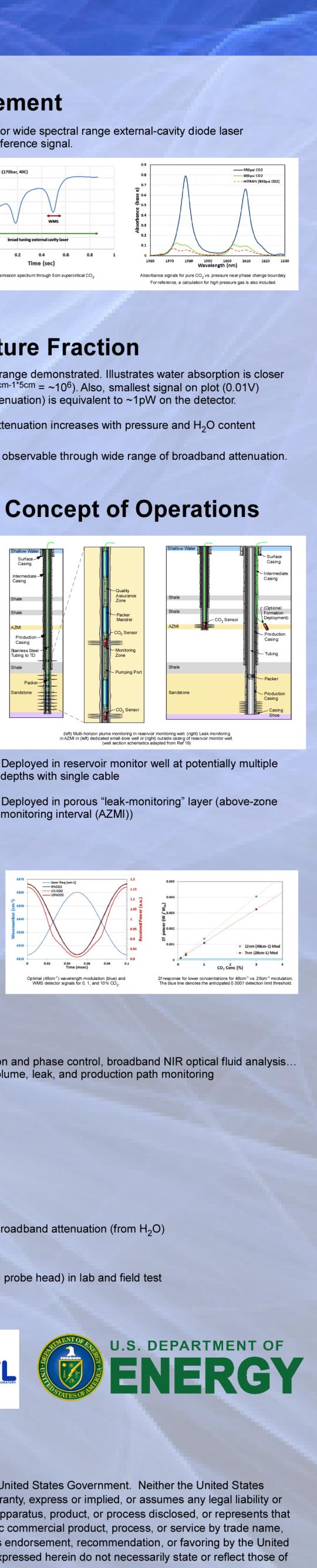
- Liquid CO₂ feature approaches Lorentzian line shape
- Available modulation depth (28cm⁻¹) approaches optimal modulation depth (2.2FWHM, 48cm⁻¹).
- Model system response using 28cm⁻¹ wide portion of recorded absorption data Relatively insensitive to modulation depth. 28cm⁻¹ modulation only 25% lower
- response than optimum depth. The approach will be sufficient. 10⁻⁴ absorbance detection limit is near 0.1% CO₂.

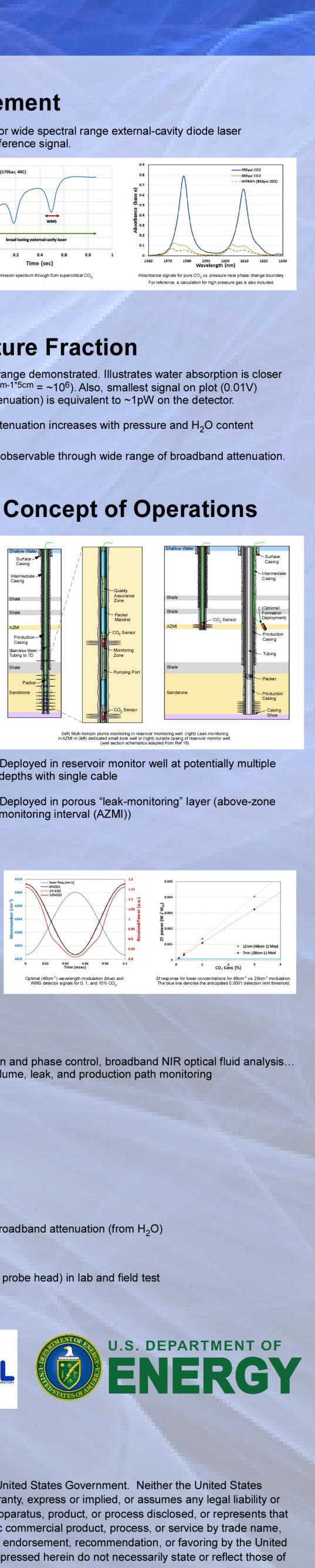
Extension Applications

- Enhanced oil recovery (EOR) plume monitoring, multi-horizon on/off production and phase control, broadband NIR optical fluid analysis... • Enhanced (natural) gas recovery (EGR) and CO₂-based hydraulic fracturing – plume, leak, and production path monitoring
- Logging while drilling
- Monitoring natural CO₂ reservoirs
- Factory supercritical CO₂ applications (solvent, refrigerant, reagent...)
- CO₂ as extracting solvent (coffee decaffeination, botanical oils...)
- Rapid CO₂ expansion for microparticulation (pharma & more)

Conclusions

- Supercritical CO₂ spectral signatures observed across >10⁶ dynamic range of broadband attenuation (from H_2O)
- Wide modulation WMS approach sufficient at all P & T conditions • Detection limits for a 5cm path estimated at <0.1% CO₂
- Engineering prototype is designed in follow-on work, build and test (immersed probe head) in lab and field test


Acknowledgments


This material is based upon work supported by the Department of Energy under Award Number DE-SC0011876

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

